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Abstract
The dual basis of the canonical basis of the modified quantized enveloping
algebra is studied, in particular for type A. The construction of a basis
for the coordinate algebra of the n × n quantum matrices is appropriate for
studying the multiplicative property. It is shown that this basis is invariant under
multiplication by certain quantum minors including the quantum determinant.
Then a basis of quantum SL(n) is obtained by setting the quantum determinant
to one. This basis turns out to be equivalent to the dual canonical basis.

PACS numbers: 02.20.Uw, 02.20.Sv

1. Introduction

Throughout this paper, the base field is K = Q(q), i.e., the field of quotients of polynomials
in the indeterminate q with rational coefficients. Let A be an algebra over K. Two elements
b, b′ ∈ A are called equivalent (denoted by b ∼ b′) if there exists m ∈ Z such that b′ = qmb.
Two elements b, b′ are called q-commuting if bb′ ∼ b′b.

Let g be the Kac–Moody algebra associated with an n × n symmetrizable Cartan
matrix A. Let Uq(g) be the quantized enveloping algebra associated with g, with its two
usual subalgebras Uq(n

+) and Uq(n
−) (see section 2 for details). The dual basis of the

canonical basis of Uq(n
−) has been widely studied in the literature. In [6], a conjecture posed

by Berenstein and Zelevinsky is stated as follows: two elements b1, b2 of the dual canonical
basis are q-commuting with each other, if and only if b1b2 ∼ b for some b in the dual
canonical basis. This property of the basis is called the multiplicative property. By use of the
Hall algebra technique, the multiplicative property of the dual canonical basis of Uq(n

+) is
studied in [14]. In [8], counter-examples are given for the Berenstein–Zelevinsky conjecture
by finding some so-called imaginary vectors. There are many connections between the
irreducible representations of Hecke algebras of A type and the multiplicative property of the
dual canonical basis; see [8, 9].
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Let L(λ) be an irreducible highest weight module for Uq(g) and let L∗(λ) be its graded
dual. In [10], Lusztig constructed a canonical basis of the tensor product U(λ,µ) :=
L(λ) ⊗ L∗(µ) which can be lifted to a canonical basis B̃ of the so-called modified quantized
enveloping algebra Ũq(g). In this paper we will show that the module L(λ) ⊗ L∗(µ) is
absolutely indecomposable if the Kac–Moody algebra g is of affine or indefinite type. Next,
we focus on the case of type A. By constructing a basis of the coordinate algebra Oq(M(n))

of the n × n quantum matrices, we get a basis of Oq(SL(n)) which turns out to be equivalent
to the dual canonical basis. A pleasant aspect of this construction is that it is appropriate to
study the multiplicative property of the basis.

2. Kashiwara’s construction

Let g be the Kac–Moody algebra associated with an n × n symmetrizable Cartan matrix A.
One can choose a bilinear form such that the integral weight lattice is an even integral lattice.
Let � = {α1, α2, . . . , αn} and �v = {

αv
1 , α

v
2 , . . . , α

v
n

}
be the set of simple roots and the set of

simple coroots, respectively. Let Uq(g) be the quantized enveloping algebra associated with
g with generators E1, . . . , En, F1, . . . , Fn, K1,K

−1
1 , . . . , Kn,K

−1
n and the usual defining

relations (see, e.g., [7]) by replacing q by q2 because we do not want to use the square root of
q later.

Let Uq(n
+) (resp. Uq(n

−)) be the subalgebra generated by E1, . . . , En (resp. F1, . . . , Fn).
For any dominant weight λ, denote by L(λ) the irreducible highest weight module over Uq(g)

with the highest weight λ. Denote by L∗(λ) the graded dual of L(λ) which is an irreducible
lowest weight module with the lowest weight −λ. Let − be the automorphism of the algebra
Uq(g) given by

q̄ = q−1, Ēi = Ei, F̄ i = Fi, K̄i = K−1
i

for all i. Let vλ (resp. v∗
µ) be a highest weight vector of L(λ) (resp. a lowest weight vector

of L∗(µ)). Denote also by − the linear automorphism of the module L(λ) and of the module
L∗(µ) given by

pvλ = p̄vλ, pv∗
µ = p̄v∗

µ

for p ∈ Uq(g).

Remark 2.1. Although we use − to denote several different automorphisms of various spaces,
one can identify the meaning of the − from the context.

In [10], Lusztig constructed a canonical basis of the tensor product U(λ,µ) :=
L(λ)⊗L∗(µ) which can be lifted to a canonical basis B̃ of the modified quantized enveloping
algebra Ũq(g).

We will not go into detail about the canonical basis of the module U(λ,µ). However, we
would like to show one remarkable fact about the module U(λ,µ). It is known that if g is of
finite type, U(λ,µ) is finite dimensional and is indecomposable if and only if one of λ and µ

is zero. However, if g is of affine or indefinite type, the situation changes dramatically.

Theorem 2.2. If g is of affine or indefinite type, then

EndUq(g)U(λ, µ)=∼ Q(q).

Hence, U(λ,µ) is absolutely indecomposable.

Proof. Clearly, if λ or µ is trivial, then U(λ,µ) is a lowest weight module or a highest weight
module and the theorem holds. Hence, we may assume that both λ and µ are nontrivial.
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It is known that U(λ,µ) is a cyclic module and is generated by vλ ⊗ v∗
µ. For any

ψ ∈ EndUq(g)U(λ, µ), then ψ(vλ ⊗ v∗
µ) = u(vλ ⊗ v∗

µ) ∈ U(λ,µ)λ−µ for some u ∈ Uq(g)

which is of weight zero. If u(vλ ⊗ v∗
µ) is not a multiple of vλ ⊗ v∗

µ, then

u(vλ ⊗ v∗
µ) = s(vλ ⊗ v∗

µ) +
∑

i

uivλ ⊗ wiv
∗
µ

where s ∈ Q(q), ui ∈ Uq(n
−), wi ∈ Uq(n

+), for all i, and the set {wiv
∗
µ}i is linearly

independent. Choose wkv
∗
λ such that its weight is maximal among all the weights of wiv

∗
λ for

all i. Assume that ukvλ ∈ L(λ)�, where � must be smaller than λ.

1. If the Cartan matrix A is of indefinite type, then there exists αv
i such that

〈
λ − �,αv

i

〉
<

0, i.e.
〈
λ, αv

i

〉
<

〈
�,αv

i

〉
and so F

〈λ,αv
i 〉+1

i ukvλ �= 0. However, F
〈λ,αv

i 〉+1
i u(vλ ⊗

v∗
µ) = ψ

(
F

〈λ,αv
i 〉+1

i (vλ ⊗ v∗
µ)

) = 0. On the other hand, F
〈λ,αv

i 〉+1
i u(vλ ⊗ v∗

µ) =∑
m,j c

(m)
ij F

〈λ,αv
i 〉+1−m

i ujvλ ⊗ Fm
i wjv

∗
µ, where c

(m)
ij ∈ Q(q). One can easily see that

c
(0)
ik = 1. Hence, F

〈λ,αv
i 〉+1

i ukvλ = 0. Contradiction!
2. Now, we may assume that the Cartan matrix A is of the affine type. If there exists αv

i such
that

〈
λ − �,αv

i

〉
< 0, then we can prove in the same way as above. If

〈
λ − �,αv

i

〉
� 0

for all i, then we must have
〈
λ − �,αv

i

〉 = 0 for all i. As there exists Ei such that

Eiukvλ �= 0, we have again that F
〈λ,αv

i 〉+1
i ukvλ �= 0.

Therefore, u(vλ ⊗ v∗
µ) is a multiple of vλ ⊗ v∗

µ and so ψ is a scalar endomorphism.
Moreover, U(λ,µ) is absolutely indecomposable. �

Let UZ(g) be the integral form of the quantized enveloping algebra which is a Z[q, q−1]-
subalgebra of the quantized enveloping algebra Uq(g) generated by the divided powers
E

(s)
i := Es

i

/
[s]!, F (s)

i := F s
i

/
[s]!,Ki,K

−1
i for all i. The quantum integer is defined by

[s] = q2s − q−2s/q2 − q−2 (one may refer to [4] for terminology and notation).
Denote by Uq(g)∗ the linear dual of the algebra Uq(g). Since Uq(g) is a Uq(g) bi-module,

Uq(g)∗ has an induced Uq(g) bi-module structure. Let

Aq(g) := {f ∈ Uq(g)∗ | there exists l � 0 such that

Ei1 , . . . , Eil f = f Fi1 , . . . , Fil = 0 for any i1, . . . , il}. (2.1)

The quantum Peter–Weyl theorem was proved in [6].

Theorem 2.3. As Uq(g) bi-modules

Aq(g)=∼ ⊕λ∈P L(λ) ⊗ L∗(λ)

where u ⊗ v ∈ L(λ) ⊗ L∗(λ) viewed as a linear function on Uq(g) as follows:

(u ⊗ v)(p) = 〈up, v〉, for p ∈ Uq(g),

where L(λ) and L∗(λ) are viewed as right Uq(g) module and left Uq(g) module, respectively.

Let A be the subring of Q(q) consisting of the rational functions of q which are regular
at q = 0. Let − be the ring endomorphism of Q(q) sending q to q−1.

Let M be an integral Uq(g) module. Then

M = ⊕λF
(n)
i (Ker Ei ∩ Mλ).

We define the lower Kashiwara operators ei, fi of M by

fi

(
F

(n)
i u

) = F
(n+1)
i u and ei

(
F

(n)
i u

) = F
(n−1)
i u

for u ∈ Ker Ei ∩ Mλ.
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Definition 2.4. A pair (L,B) is called a lower crystal base of M if it satisfies the following
conditions:

(1) L is a free sub-A-module of M such that M =∼ Q(q) ⊗A L.
(2) B is a base of the Q-vector space L/qL.
(3) eiL ⊂ L and fiL ⊂ L for any i.
(4) eiB ⊂ B ∪ {0} and fiB ⊂ B ∪ {0}.
(5) L = ⊕λ∈P Lλ and B = ∪λ∈P Bλ, where Lλ = L ∩ Mλ,Bλ = B ∩ Lλ/qLλ.
(6) For any b, b′ ∈ B, b′ = fib if and only if b = eib

′.

The upper Kashiwara operators e′
i and f ′

i are defined as follows: for u ∈ Ker Ei ∩ Mλ

and 0 � n � 〈λ, αv〉,
e′
i

(
F

(n)
i u

) = [〈λ, αv〉 − n + 1]

[n]
F

(n−1)
i u,

and

f ′
i

(
F

(n)
i u

) = [n + 1]

[〈λ, αv〉 − n]
F

(n+1)
i u.

We say that (L,B) is an upper crystal base if (L,B) satisfies the conditions in the
definition of lower crystal base with e′

i , f
′
i instead of ei, fi .

For λ ∈ P , we define ψM ∈ Aut M by

ψM(u) = q−2(λ,λ)u

for u ∈ Mλ. It is known that ψ−1
M e′

iψM (resp. ψ−1
M f ′

i ψM ) coincides with ei (resp. fi) on L/qL.
In [5], Kashiwara proved that

Lemma 2.5. (L,B) is a lower crystal base if and only if ψM(L,B) is an upper crystal base.

Let L(λ) be the upper crystal lattice which is the smallest A submodule of L(λ) containing
vλ and is stable under the action of upper Kashiwara operators. Similarly, let L∗(λ) be the
upper crystal lattice which is the smallest A submodule of L∗(λ) containing v∗

λ and is stable
under the action of upper Kashiwara operators. Set

L(Aq(g)) := ⊕λ∈P+L(λ) ⊗ L∗(λ).

Define that

〈ū, p〉 = 〈u, p̄〉,
then one can check that u ⊗ v = ū ⊗ v̄ for u ∈ L(λ) and v ∈ L∗(λ). Hence

L(Aq(g)) = ⊕λ∈P+L(λ) ⊗ L∗
(λ).

Let

AZ
q (g) = {f ∈ Aq(g) | 〈f,UZ(g)〉 ⊂ Z[q, q−1]}.

Let u ⊗ v ∈ L(λ) ⊗ L∗(λ), where u (resp. v) is a weight vector of weight λl (resp. λr ).
Then u ⊗ v is called a weight vector with left weight λl and right weight λr . An element in
Aq(g) is called a refined weight vector if it is a linear combination of the elements u ⊗ v with
the same left and right weights.

Let us recall the definition of balanced triple. Let V be a vector space over Q(q), a
B-lattice of V is a B-submodule M of V such that V =∼ Q(q) ⊗B M . Let VZ be a Z[q, q−1]-
lattice of V,L an A-lattice of V and L an A-lattice of V . In [5], it was proved that

Lemma 2.6. Set E = VZ ∩ L ∩ L. Then the following conditions are equivalent:
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(1) E −→ VZ ∩ L/VZ ∩ qL is an isomorphism.
(2) E −→ VZ ∩ L/VZ ∩ q−1L is an isomorphism.
(3) VZ ∩ qL ⊕ VZ ∩ L −→ VZ is an isomorphism.
(4) A ⊗ E −→ L,A ⊗ E −→ L, Z[q, q−1] ⊗Z E −→ VZ, Q(q) ⊗Z E −→ V are

isomorphisms.

We call (L,L, VZ) balanced if these equivalent conditions are satisfied. Let us denote
by G the inverse of the isomorphism E −→ VZ ∩ L/VZ ∩ q−1L. If B is a base of VZ ∩ L/

VZ ∩ q−1L, then {G(b)|b ∈ B} is a base of V .
In [6], it was proved that

(
AZ

q (g),L(Aq(g)),L(Aq(g))
)

is a balanced triple. Hence there
is a Z basis B ′ of(

AZ
q (g) ∩ L(Aq(g)) ∩ L(Aq(g))

)
.

In [7], it was shown that B ′ is the dual basis of the canonical basis of the modified
enveloping algebra Ũq(g) if g is of finite type.

In the following, we always assume that g is of finite type. We fix a reduced expression
in the longest element of the Weyl group. Let Fβ1 , Fβ2 , . . . , FβN

be the ordered root vectors
given, defined according to the chosen reduced expression of the longest element in the
Weyl group, where N is the length of the longest element in the Weyl group. For any
I = (i1, i2, . . . , iN ) ∈ ZN

+ , denote by F I the monomial F
(i1)
β1

F
(i2)
β2

, . . . , F
(iN )
βN

which forms
a PBW-type basis of the subalgebra Uq(n

−). The monomial EI is defined similarly which
forms a PBW-type basis of the subalgebra Uq(n

+).
Let B− and B+ be the canonical basis of Uq(n

−) and Uq(n
+), respectively. For any

dominant weight λ, denoted by

B−
λ = {b ∈ B− | bvλ �= 0}

and

B+
λ = {b′ ∈ B+ | b′v∗

λ �= 0}.
Note that each dual canonical basis element is a refined weight vector. Hence, we only need to
consider the homogeneous part L(λ)µ ⊗L∗(λ)γ ∩L(λ)µ ⊗ L∗(λ)γ ∩AZ

q (g). It is well known
that bvλ for b ∈ B−

λ , form an A-base of the lower crystal lattice of L(λ), so by lemma 2.5,
q−2(µ,µ)bvλ ∈ L(λ). Therefore, q−2(µ,µ)−2(γ,γ )bvλ ⊗ b′v∗

λ ∈ L(λ) ⊗ L(λ)∗ for bvλ of weight
µ and b′v∗

λ of weight γ . Hence

bvλ ⊗ b′v∗
λ = q2(µ,µ)+2(γ,γ )q−2(µ,µ)−2(γ,γ )bvλ ⊗ b′v∗

λ ∈ L(λ) ⊗ L∗(λ).

Note that bvλ ⊗b′v∗
λ is − invariant, it lies in the intersection of Lq(g),Lq(g) and AZ

q (g). Since

the operators ei, fi and ψ−1
M e′

iψM,ψ−1
M f ′

i ψM agree, respectively, after modulo q, we get that
the basis B ′ equals{

bvλ ⊗ b′v∗
λ | b ∈ B−

λ , b′ ∈ B+
λ

}
.

It is well known that any canonical basis element b in B− is of the form

b = F I +
∑
I ′

aI,I ′F I ′

where the coefficients aI,I ′ ∈ qZ[q] and the element b are − invariant. F I is called the leading
term of b. The canonical basis elements in B+ have the similar form.

Let

C−
λ = {F I |F I is the leading term of an element b ∈ B−

λ }
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and let

C+
λ = {EI |EI is the leading term of an element b′ ∈ B+

λ }.
Then C−

λ vλ (resp. C+
λv∗

λ) is the PBW basis of L(λ) (resp. L(λ)∗) with an order given by the
chosen reduced expression of the longest element in the Weyl group.

We order the PBW-type basis
⋃

λ C−
λ ⊗ C+

λ by lexicographic ordering.

Theorem 2.7. The basis B ′ is characterized by the following two conditions:

(1) b′ = F Ivλ ⊗EI ′
v∗

λ +
∑

Ik,I
′
K

a
Ik,I

′
k

I,I ′ F Ikvλ ⊗EI ′
k v∗

λ where a
Ik,I

′
k

I,I ′ ∈ qZ[q] and a
Ik,I

′
k

I,I ′ �= 0 only
if (Ik, I

′
k) � (I, I ′), for any b′ ∈ B ′.

(2) b′ = b′.

Proof. Clearly, each element bvλ ⊗ b′v∗
λ satisfies the two conditions. The uniqueness can be

proved in the same way as in [1]. �

The following result was proved in [6].

Proposition 2.8. Let x and y be refined weight vectors of weights (λl, λr) and (µl, µr),
respectively. Then

xy = q2(λr ,µr )−2(λl ,µl)ȳx̄.

By using the above proposition, one can easily verify that

Lemma 2.9. The mapping

φ : Aq(g) −→ Aq(g),

q �→ q−1,

u ⊗ v �→ q((λl ,λl )−(λr ,λr ))ū ⊗ v̄,

(2.2)

if u ⊗ v is of the left weight λl and right weight λr , extends to an algebra anti-automorphism
of the algebra Aq(g) over Q.

Let b′ ∈ B ′ with weights (λl, λr). Then the element b = q
1
2 ((λl ,λl )−(λr ,λr ))b′ is invariant

under the anti-automorphism φ. Let

L∗ = {b|b′ ∈ B ′}.
Then L∗ is also a Z[q, q−1] basis of AZ(g).

It is clear that the multiplicative properties of B ′ and L∗ are the same.

Proposition 2.10. Let b1, b2 ∈ L∗. Assume that b1b2 ∼ b for some b ∈ L∗. Then b1b2 ∼ b2b1.

Proof. Assume that b1b2 = qab for some a ∈ Z. Applying the anti-automorphism φ, we
deduce that b2b1 = q−ab. Hence, b1b2 = q2ab2b1. �
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3. The construction of the basis of Oq(M (n))

The coordinate algebra Oq(M(n)) of the quantum matrix is an associative algebra, generated
by elements Zij , i, j = 1, 2, . . . , n, subject to the following defining relations:

ZijZik = q2ZikZij if j < k, (3.1)

ZijZkj = q2ZkjZij if i < k, (3.2)

ZijZst = ZstZij if i > s, j < t, (3.3)

ZijZst = ZstZij + (q2 − q−2)ZitZsj if i < s, j < t. (3.4)

For any matrix A = (aij )
n
i,j=1 ∈ Mn(Z+) (Z+ = {0, 1, . . .}) we define a monomial ZA by

ZA =
n∏

i,j=1

Z
aij

ij , (3.5)

where the factors are arranged in lexicographic order on I (n) = {(i, j) | i, j = 1, . . . , n}. It
is well known that the set {ZA|A ∈ Mn(Z+)} is a basis of the algebra Oq(M(n)).

From the defining relations (3.1) of the algebra Oq(M(n)), it is easy to show the following
lemma.

Lemma 3.1.

(1) The mapping
− : Zij �→ Zij q �→ q−1 (3.6)

extends to an algebra anti-automorphism of the algebra Oq(M(n)) as an algebra over Q.
(2) The mapping

σ : Zij �→ Zji (3.7)

extends to an algebra automorphism of the algebra Oq(M(n)) as an algebra over
K = Q(q).

For any A = (aij )n×n ∈ Mn(Z+). Let

ro(A) =

∑

j

a1j , . . . ,
∑

j

anj


 = (r1, r2, . . . , rn)

which is called the row sum of A and

co(A) =

∑

j

aj1, . . . ,
∑

j

ajn


 = (c1, c2, . . . , cn)

which is called the column sum of A.
For any matrix A = (aij )

n
i,j=1 ∈ Mn(Z+), a monomial having the factors of ZA in arbitrary

order. Then its expansion in terms of monomials ZB only involves terms where ro(B) = ro(A)

and co(B) = co(A). Let Pr(A, s, t) = ∑
i�s,j�t aij . Then Pr(A, s, t) � Pr(B, s, t) for

any s, t � n and matrix B appeared in the expansion considered above.
From the defining relations (3.1) of the algebra Oq(M(n)), we have

ZA = E(A)ZA +
∑
B

cB(A)ZB, (3.8)
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where

E(A) = q−2(
∑

i

∑
j>k aij aik+

∑
i

∑
j>k ajiaki )

and B < A, ro(B) = ro(A), co(B) = co(A), cB(A) ∈ Z[q, q−1],� is the lexicographic
ordering.

For a pair of vectors R,C ∈ Zn
+, denote by M(R,C) the subspace of Oq(M(n))

spanned by ZA with ro(A) = R, and co(A) = C. Note that M(R,C) is − invariant and
Oq(M(n)) = ⊕R,CM(R,C).

Let D(A) = q− ∑
i

∑
j>k aij aik−

∑
i

∑
j>k ajiaki and let Z(A) = D(A)ZA. Set

L∗ = ⊕A∈Mn(Z+)Z[q]Z(A).

Theorem 3.2. There is a unique basis B∗ = {b(A)|A ∈ Mn(Z+)} of L∗ determined by the
following conditions:

(1) b(A) = b(A) for all A.
(2) b(A) = Z(A) +

∑
B<A hB(A)Z(B) where hB(A) ∈ qZ[q] and ro(B) = ro(A), co(B) =

co(A).

Proof. We rewrite equation (3.8) in terms of Z(A), then

Z(A) =
∑
B

aABZ(B), (3.9)

where aAA = 1, aAB ∈ Z[q, q−1] and aAB = 0 unless B � A, where � is the
lexicographic ordering. By theorem 1.2 of [1], there is an IC-basis with respect to the triple
({ZA | A ∈ Mn(Z+)},− ,�) determined by the relation stated in the context of the theorem.

�

The quantum determinant detq is defined as follows:

detq = 
σ∈Sn
(−q2)l(σ )Z1σ(1)Z2σ(2), . . . , Znσ(n). (3.10)

It is known that detq is a central element of the algebra Oq(M(n)).
For later reference we now introduce some terminology. Let m � n be a positive integer.

Given any two subsets I = {i1, i2, . . . , im} and J = {j1, j2, . . . , jm} of {1, 2, . . . , n}, each
having cardinality m, it is clear that the subalgebra of Oq(M(n)) generated by the elements
Zirjs

with r, s = 1, 2, . . . , m, is isomorphic to Oq(M(m)), so we can talk about its determinant.
Such a determinant is called a quantum minor, and will be denoted by detq(I, J ).

Let I, J be two subsets of {1, 2, . . . , n} with the same cardinality. Obviously, the dual
canonical basis of the subalgebra generated by Zij for i ∈ I, j ∈ J is a subset of the
basis B∗ of the algebra Oq(M(n)). More generally, if (u, v) � (s, t), then the subalgebra
Oq(M(n))

(u,v)

(s,t) generated by Zi,j , for (u, v) � (i, j) � (s, t), is − invariant and one can
construct a basis analogous to the construction of the basis considered in theorem 3.2, and
obviously the resulting basis of Oq(M(n))

(u,v)

(s,t) is a subset of the basis B∗.

Lemma 3.3. The quantum determinant detq is an element of the basis B∗. Furthermore, any
quantum minor is also an element of the dual canonical basis.

Proof. We only need to show that detq is − invariant. It is well known that the centre of the
algebra Oq(M(n)) is generated by the quantum determinant [12]. Note that

detqZij = Zij detq = detqZij

= Zij detq, (3.11)
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for any i, j . Hence, detq is a polynomial of detq . Therefore,

detq = detq

by comparing the leading terms. �

Corollary 3.4. The basis B∗ is σ invariant. More precisely,

σ(b(A)) = b(AT ),

for all A ∈ Mn(Z+), where AT is the transposition of A.

Proof. Let b(A) be an element of the dual canonical basis B∗ of the form given in theorem 3.2
(2). Then it follows that all the matrices B appearing in the expansion of b(A) are obtained
from A by a sequence of 2 × 2 submatrix transformations of the following form:(

aij ait

asj ast

)
−→

(
aij − 1 ait + 1
asj + 1 ast − 1

)
, (3.12)

if both aij and ast are positive. Hence BT can be obtained from AT by a sequence of the
submatrix transformations of the form(

aji ati

ajs ats

)
−→

(
aji − 1 ati + 1
ajs + 1 ats − 1

)
. (3.13)

Especially, BT � AT . Note that the monomials ZBT

and σ(ZB) have the same factors
but could be in different order. However, two generators Zij and Zst which appear in the
monomials but in different order must satisfy the third relation in (3.1). Hence, ZBT = σ(ZB)

σ (b(A)) = Z(AT ) +
∑
B

hB(A)Z(BT ) (3.14)

with hB(A) ∈ qZ[q]. Clearly,

σ(b(A) = σ(b(A))

since σ and − commute with each other. �

Denote by In the n × n identity matrix.

Lemma 3.5. For any A ∈ Mn(Z+),

Z(A) detq = Z(A + In) mod qL∗.

Proof. For i < s, j < t , we have

Zm
stZij = ZijZ

m
st + (q2−4m − q2)ZitZsjZ

m−1
st .

Recall that

detq = 
σ∈Sn
(−1)l(σ )q2l(σ )Z1σ(1)Z2σ(2), . . . , Znσ(n).

When we compute Z(A) detq , we only have to deal with those coefficients of the form q−2a

with a a positive integer. Assume that

Z(A) detq =
∑

aBZ(B).

Clearly, aB ∈ Z[q, q−1] and the leading term is Z(A + In) and the matrix B appearing in
the expression has at least one nonzero entry in each row and each column. We need to
compute Z(A)(−1)l(σ )q2l(σ )Z1σ(1)Z2σ(2), . . . , Znσ(n), for all σ ∈ Sn. From the expression of
the quantum determinant we see that there are four possibilities of producing coefficients of
the form q−2a with a a positive integer.
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Case 1. Zm
stZsj = q−2mZsjZ

m
st where t > j but no Zit behind. Then q2m will be absorbed

by D(B) where Z(B) is the resulting term.
Case 2. Zm

stZit = q−2mZitZ
m
st where s > i but no Zsj appeared before. Then q2m will be

absorbed by D(B) where Z(B) is the resulting term.
Case 3. Both Zm

stZsj = q−2mZsjZ
m
st where t > j and Zm

stZit = q−2mZitZ
m
st where s > i

happened. Then we get q−4m. However, we will see that it will be cancelled by a term in
the following case. To this end, we need to remember that the terms we are dealing with
are from Z(A)Z1σ(1)Z2σ(2), . . . , Znσ(n). Note that l(σ (j t)) = l(σ ) − 1.
Case 4. Zm

stZij = ZijZ
m
st + (q2−4m − q2)ZitZsjZ

m−1
st where s > i, t > j . Then the

coefficient q2−4m will be cancelled by a term in case 3.

Hence, the coefficients aB are all in qZ[q] except aA which is 1. �

The following proposition follows directly from the above lemma.

Proposition 3.6. The basis B∗ is invariant under the multiplication of detq . More precisely,

b(A) detq = b(A + In)

for all A ∈ Mn(Z+).

By using this proposition, we can determine b(A), if A is a diagonal matrix. Let
A = diag(a1, a2, . . . , an). We may assume that a1 � a2 � · · · � an without loss of
generality. Then

b(A) =
n∏

i=1

detai−ai−1
q,i

where detq,i is the quantum determinant of the subalgebra generated by Zst for s, t = i, . . . , n,
and where we put a0 = 0.

4. Some subalgebras

In this section, we study the multiplicative property of the basis B∗. Similar to the proof of
proposition 2.9, we get

Lemma 4.1. Let b1, b2 ∈ B∗. If b1b2 ∼ b for some b ∈ B∗, then b1b2 ∼ b2b1.

Divide the matrix by a broken line ξ which consists of lines determined by equations
ax + by = m for a, b ∈ Z+ and m ∈ N (each line has a non-positive slope). Recall that
I (n) = {(i, j) | i, j = 1, . . . , n}. Let

I1 = {(x, y) ∈ I (n) | (x, y) is in the left upper side of the broken line ξ},
and let I2 be the complement of I1 in I (n).

Let Oi be the subalgebra of Oq(M(n)) generated by Zxy for (x, y) ∈ Ii, i = 1, 2. One
can easily see that Oi is determined by the generators Zxy and relations (3.1). Hence, the
algebra Oi is closed under the bar action and therefore there is a basis B∗

i of the sub-lattice
L∗

i of the Z[q]-lattice L∗ spanned by {Z(A) | A = (axy) ∈ Mn(Z+), axy = 0 if (x, y) ∈ I3−i}.
Clearly, B∗

i is a subset of B∗ which consists of the b(A) for A = (axy) ∈ Mn(Z+),

axy = 0 if (x, y) ∈ I3−i .
Write

A = A+ + A−,
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where the entries of A+ in the left upper side of the broken line ξ are zero and the entries of
A− in the right lower side (including the broken line ξ ) are zero. Then

Theorem 4.2. b(A) ∼ b(A+)b(A−) if and only if b(A+)b(A−) ∼ b(A−)b(A+).

Proof. If b(A) = qab(A+)b(A−) for some integer a, then b(A−)b(A+) ∼ b(A+)b(A−) by the
above lemma.

For

b(A+) = Z(A+) +
∑
B+

aB+A+Z(B+),

and

b(A−) = Z(A−) +
∑
B−

aB−A−Z(B−),

where aB+A+, aB−A− ∈ qZ[q]. Assume that b(A+)b(A−) = qab(A−)b(A+), for some integer
a which can be computed by only considering the leading terms. From the defining relations
(3.1), the integer a must be even, say, a = 2m. Then q−mb(A+)b(A−) is bar-invariant with
leading term Z(A). Note that the coefficients we encounter only depend on the row sums
and column sums. Actually, m = ∑

j

(
r+
j r−

j + c+
j c

−
j

)
where

(
r+

1 , . . . , r+
n

)
and

(
c+

1 , . . . , c+
n

)
(resp. (r−

1 , . . . , r−
n ) and (c−

1 , . . . , c−
n ) are the row sum and column sum, respectively, of A+

(resp. of A−). Then all terms produce the same m. Therefore,

b(A) = q−mb(A+)b(A−)

by theorem 3.2. �

5. Some quantum minors

Let detq(t) = detq({1, . . . , t}, {n − t + 1, . . . , n}), for t = 1, 2, . . . , n.
Let M−

t = {(i, j) ∈ N2 | 1 � i � t and 1 � j � n − t},M+
t = {(i, j) ∈ N2 | t + 1 �

i � n and n − t + 1 � j � n},Ml
t = {(i, j) ∈ N2 | t + 1 � i � n and 1 � j � n − t},

and Mr
t = {(i, j) ∈ N2 | 1 � i � t and n − t + 1 � j � n}. The following result was proved

in [3].

Lemma 5.1. For any i, j, t ,

Zij detq(t) = detq(t)Zij if (i, j) ∈ Ml
t ∪ Mr

t ,

Zij detq(t) = q2 detq(t)Zij if (i, j) ∈ M−
t ,

(5.1)

and

Zij detq(t) = q−2 detq(t)Zij if (i, j) ∈ M+
t .

Let

Et =
(

0 It

0 0

)

and let qZB∗ = {qab(A) | for all A and a ∈ Z}.
Theorem 5.2. The set qZB∗ is invariant under the multiplication of the quantum minors
detq(t) and σ(detq(t)). More precisely,

b(A) detq(t) = qr1+···+rt−cn−t+1−···cnb(A + Et). (5.2)
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b(A)σ(detq(t)) = qc1+c2+···+ct−rn−t+1−···−rnb
(
A + ET

t

)
, (5.3)

where ET
t is the transposition of the matrix Et .

Proof. For any A ∈ Mn(Z+), write

A =
(

A11 A12

A21 A22

)
,

where A11 is a t × (n − t) submatrix, A12 is a t × t submatrix, A21 is a (n − t) × (n − t)

submatrix and A22 is a (n− t)× t submatrix. Then two monomials ZA and ZA11ZA12ZA21ZA22

have the same factors but could be in different order. However, the first monomial can be
obtained from the second one by applying the third defining relation of the algebra Oq(M(n)).
Hence,

ZA = ZA11ZA12ZA21ZA22 ,

and

Z(A) detq(t) = q−2
∑

i�t+1,j�n−t+1 aij D(A)ZA11ZA12 detq(t)Z
A21ZA22 .

Apply the above lemma to ZA12 detq(t), then we get

Z(A12) detq(t) = Z(A12 + It ) +
∑
B12

hB12(A12)Z(B12),

where B12 � A12 + It , B12 and A12 + It have the same row sums and column sums. Hence

Z(A) detq(t) = q−2
∑

i�t+1,j�n−t+1 aij D(A)D(A12)
−1

×D(A12 + It )D(A + Et)
−1Z(A + Et)

+
∑
B12

hB12(A12)q
−2

∑
i�t+1,j�n−t+1 aij D(A)D(A12)

−1

×D(B12)D

((
A11 B12

A21 A22

))−1

Z

((
A11 B12

A21 A22

))
.

By direct computation, one can show that the dependence of

D(B12)D

((
A11 B12

A21 A22

))−1

on the matrix entries of B12 is only a dependence on the row and column sums.
Then one deduces that

Z(A) detq(t) = qr1+···+rt−cn−t+1−···−cn


Z(A + Et) +

∑
D,D<A+Et

c(D,A)Z(D)




with c(D,A) ∈ qZ[q].
For a basis element b(A) of the form given in theorem 3.2, we then deduce that

b(A) detq(t) = qr1+···+rt−cn−t+1−···−cn





Z(A + Et) +

∑
D,D<A+Et

cD(A)Z(D)




+
∑

B,B<A

hB(A)


Z(B + Et) +

∑
D,D<B+Et

cD(B)Z(D)





 (5.4)

with cD(A), cD(B) ∈ qZ[q]. By

b(A) detq(t) = q2(r1+···+rt−cn−t+1−···−cn) detq(t)b(A),
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we see that (Z(A + Et) +
∑

D,D<A+Et
cD(A)Z(D)) +

∑
B,B<A hB(A)(Z(B + Et) +∑

D,D<B+Et
cD(B)Z(D)) is − invariant, and it must be the basis element b(A + Et). Finally,

apply the algebra automorphism σ . Then the second statement follows from corollary 3.4.
�

Corollary 5.3. Let

A =




a1 b2 b3 · · · bn−1 bn

c2 a2 b2 · · · bn−2 bn−1

c3 c2 a3 · · · bn−3 bn−2

· · · · · · · · · · · ·
cn cn−1 cn−2 · · · c2 an


 .

Then the basis element

b(A) ∼ �n−1
t=1 detq(t)

bn−t+1σ(detq(t))
cn−t+1b(diag(a1, a2, . . . , an)).

Proof. Successively peel off the off-diagonals of A by (5.2) and (5.3). �

Definition 5.4. A matrix A = (aij ) ∈ Mn(Z+) is called a ladder if aij � ai+1,j+1 for all i, j .

Let A be a ladder. Successively peel off the off-diagonals of A by (5.2) and (5.3), the
basis element b(A) is equivalent to a product of the quantum minors detq(t) and σ(detq(t))

and a basis element b
((

An−1 0
0 0

))
, where An−1 is a ladder of size n − 1. Repeatedly, the basis

element b(A) can be written as a product of some quantum minors which are q-commuting
with each other.

6. The coincidence of two bases

Let g be the finite-dimensional simple Lie algebra of type An−1 and let �1, . . . , �n−1 be the
fundamental dominant weights. For any dominant weight λ, the irreducible highest weight
module L(λ) occurs as a sub-quotient of a suitable power of the natural representation L(�1).
The simple modules L(�1) and L(�n−1) are dual to each other and are of dimension n.
Let e1, e2, . . . , en be the standard basis of L(�1) and let e∗

1, e
∗
2, . . . , e

∗
n be the dual basis of

L(�n−1). Then it is well known that the matrix coefficients Xij = e∗
i ⊗ej satisfy the following

relations:

XijXik = q2XikXij if j < k, (6.1)

XijXkj = q2XkjXij if i < k, (6.2)

XijXst = XstXij if i > s, j < t, (6.3)

XijXst = XstXij + (q2 − q−2)XitXsj if i < s, j < t,


σ∈Sn
(−q2)l(σ )X1σ(1)X2σ(2), . . . , Xnσ(n) = 1. (6.4)

Since the basis B∗ is invariant under the multiplication of the quantum determinant, we
get a basis K∗ of Oq(SLn)(= Aq(g)), by setting the quantum determinant to one. Clearly, the
anti-automorphism − induces the anti-automorphism φ of Oq(SL(n)) (see lemma 2.9). Let
X(A) be the image of Z(A) in Oq(SL(n)). Then

{X(A) | at least one zero in the diagonal}
is a basis of Oq(SL(n)).
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Lemma 6.1. The matrix coefficients Xij are both invariant under − (the bar action of Aq(g))
and φ.

Proof. It is known that {e1, e2, . . . , en} (resp. {e∗
1, e

∗
2, . . . , e

∗
n}) is the canonical basis of L(�1)

(resp. of L(�n−1)). Therefore, ei and e∗
j are invariant under the bar action of L(�1) and

L(�n−1), respectively. Hence, the matrix coefficients Xij are − invariant. Note that �1 and
�n−1 are minuscule dominant weights so the left weight λl (resp. the right weight λr ) of
Xij is conjugate to �1 (resp. �n−1) under the action of the Weyl group which implies that
(λl, λl) − (λr , λr) = (�1,�1) − (�n−1,�n−1) = 0. �

The basis K∗ can be described similarly to theorem 3.2 by replacing Zij by Xij and −
by φ.

Theorem 6.2. There is a unique basis

B̃∗ = {b̃(A) | A ∈ Mn(Z+), at least one zero in the diagonal}
of L̃∗ = ⊕AZ[q]X(A) determined by the following conditions:

(1) φb̃(A) = b̃(A) for all A.
(2) b̃(A) = X(A) +

∑
B<A hB(A)X(B) where hB(A) ∈ qZ[q] and ro(B) = ro(A), co(B) =

co(A).

Let Rn be the n-dimensional Euclidean space with standard orthogonal basis ε1, ε2, . . . , εn.
It is well known that the root system of type An−1 is a subset of Rn with simple roots
αi = εi − εi+1, for i = 1, 2, . . . , n − 1.

The Uq(g) bi-module structure can be written down explicitly (see also [12]).
For homogeneous elements x, and y with weights (λl, λr) and (µl, µr), respectively, the

left action is defined by

EiXst = δisXs−1,t , FiXst = δi,s+1Xs+1,t , KiXst = q2(εs ,αi )Xst

with Leibniz rule

Ei(xy) = Ei(x)y + q2(λl ,αi )xEi(y),

Fi(xy) = xFi(y) + q−2(µl ,αi )Fi(x)y,

Ki(xy) = q2(λl+µl,αi )xy.

The right action is defined by

XstEi = δi,s+1Xs+1,t , XstFi = δi,sXs−1,t , XstKi = q2(εs ,αi )Xst

with Leibniz rule

(xy)Ei = (x)Eiy + q2(λr ,αi )x(y)Ei,

(xy)Fi = x(y)Fi + q−2(µr ,αi )(x)Fiy,

(xy)Ki = q2(λr +µr ,αi )xy.

Denote by the same notation the image of detq(i) in Oq(SL(n)). Note that detq(i) is
annihilated by the left action of Ei for all i and by the right action of Fi for all i.

For λ = m1�1 + m2�2 + · · · + mn−1�n−1, where �1,�2, . . . , �n−1 are fundamental
weights. The module L(λ) ⊗ L∗(λ) is cyclic on vλ ⊗ v∗

λ which corresponds to∏
i

detq(i)
mi

which is an element in the basis K∗.
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Let L be the Z[q]-lattice spanned by{
q

1
2 ((λl ,λl )−(λr ,λr ))bvλ ⊗ b′v∗

λ

}
.

The lattice L is invariant under the operators ẽi which is defined by

ẽi

(
q

1
2 ((λl ,λl )−(λr ,λr ))bvλ ⊗ b′v∗

λ

) = q(λl ,αi )+1q
1
2 ((λl ,λl )−(λr ,λr ))eibvλ ⊗ b′v∗

λ

where ei is the lower Kashiwara operators for the left action. Similarly, we define the operators
f̃ i as well as the operators for the right action. Clearly, the lattice L is invariant under the
action of operators ẽi , f̃ i as well as the analogue operators for the right action. Applying
these operators to

∏
i detq(i)mi , we see that all X(A) are in the lattice L. By the uniqueness

of Lusztig’s construction the bases K∗ and L∗ are the same.
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